This project aims to develop state-of-the-art mathematical tools for the aerospace industry to aid in the design of more efficient aircraft. Such tools have the potential to greatly reduce the time and cost associated with the design of new aircraft, thus providing a competitive advantage to the industry.
Dr. David Zingg, University of Toronto
This project aims to develop state-of-the-art mathematical tools for the aerospace industry to aid in the design of more efficient aircraft. Such tools have the potential to greatly reduce the time and cost associated with the design of new aircraft, thus providing a competitive advantage to the industry. In the past year, the team made considerable progress in the development of a three-dimensional aerodynamic shape optimization algorithm. Important improvements were made to the algorithms under development, leading to improved accuracy, efficiency, and applicability. These developments resulted in successful wing optimizations which the team will be using for various objectives, including the study of unconventional wing configurations, such as split-tip wings, that significantly reduce induced drag.